Skip to main content

78. MQ-2 Gas Sensor : A friendly introduction

Hello everyone

Sorry I have not posted in a while. Today I am back with an interesting post. In this post, I will be explaining you about the MQ2 sensor and how to interface it with Arduino development board.

This Gas sensor is suitable for sensing LPG, Smoke, Alcohol, Propane, Hydrogen, Methane and Carbon Monoxide concentrations in the air. 

MQ-2 sensor

MQ2 is one of the commonly used gas sensors in MQ sensor series. It is a Metal Oxide Semiconductor (MOS) type Gas Sensor also known as Chemiresistors as the detection is based upon change of resistance of the sensing material when the Gas comes in contact with the material. Using a simple voltage divider network, concentrations of gas can be detected.

It can detect the gases and smoke anywhere from 200 to 10000ppm.

Specifications

  • Operating Voltage: 5V
  • Load Resistance: 20 kΩ
  • Heater Resistance: 33Ω ± 5%
  • Heating consumption: <800mW
  • Sensing Resistance: 10 kΩ – 60 kΩ
  • Concentration Scope: 200 – 10000ppm
  • Preheat Time: Over  24 hours

Pinout

  • GND - Ground
  • VCC - 5V
  • A0 - If you are going to use the analog output of the sensor, use this pin
  • D0 - If you are going to use the digital output of the sensor, use this pin but you must calibrate the sensor.

Follow my blog and stay tuned to learn more.
If you have any questions, please feel free to comment below.

Comments

Popular posts from this blog

51. Buzz wire game using Arduino

Hello everyone! This is my first Arduino project in 2020 and it is going to be a fun and simple project. You would have heard of the Buzz Wire, a steady hand game, and today you will be learning to make one using Arduino. Hardware components used in this project Arduino Nano USB Type A to mini B cable (for Arduino Nano) Solderless Breadboard - Mini and Full-size LEDs (x2) - Green and Red Resistors (x2) - 220 Ω  Active Buzzer module (KY-012) LCD display module with I2C interface - 16x2 Male-to-Male Jumper wires (x4) - 10cm Female-to-Male Jumper wires (x5) - 20 cm Jumpers (x5) - to reduce the usage of wires Copper wire  Tape (or any form of insulation)  Setup Your hardware setup must look somewhat similar to the ones in the images above. The beginning and end of the copper wire maze must be taped to prevent conductivity between the wire loop and maze. Connections LCD display module with I2C interface GND - Ground VCC - 5V SDA -...

85. Analog and Digital Clock on Adafruit TFT Display using Arduino

 Hey everyone, Sorry I have not posted in a while. Today, I will be presenting you my Analog and Digital Clock on Adafruit TFT Display using Arduino. You can find the schematic and code explanation within this post. Read on further to learn how I did this project. Hardware components used in this project Arduino Mega 2560 Adafruit 2.8" TFT Touch Shield for Arduino w/ Capacitive Touch - You could also use any other Arduino compatible TFT display DS1307 RTC Module Solderless Breadboard - Half+ (This is optional if you are connecting the RTC module to the development board directly) Jumper wires (x4) - Male/Male jumper wires if using solderless breadboard. Female/Male if connecting RTC module directly to Arduino Mega. Software apps Arduino IDE - latest version is recommended Setup Connections DS1307 RTC Module SCL - A5 SDA - A4 VCC - 5V GND - Ground Adafruit TFT Touch shield You can simply place the Adafruit TFT Touch shield onto your Arduino Mega 2560 development board. Make sure to...

57. Using Blynk with Arduino Uno and ESP8266 WiFi module

Hello Everyone! Today I am going to explain you how to connect your Arduino Uno with Blynk using the ESP8266 WiFi module. I have already demonstrated you about connecting your Arduino Uno with Blynk app using the Ethernet Shield W5100 and this will be the second version of that project .  Hardware components used in this project Arduino Uno ESP-01 ESP8266 WiFi module USB to TTL converter Solderless Breadboard - Half+ Breadboard power supply module - 3.3V/ 5V RGB LEDs (x3) - Common Anode Resistors (x3) - 220 Ω Relay module - 5V single channel Male-to-Male Jumper wires Female-to-Male Jumper wires Setup Your setup must look somewhat similar to that shown in the images above. Connections ESP8266 ESP-01 wifi module GND - Ground GPIO0- Not connected GPIO2 - Not connected RXD - D2 TXD - D3 CH_PD - VCC - 3.3V RESET - Not connected VCC - 3.3V  *Note: Do not connect your ESP8266 ESP-01 wifi module with 5V. RGB LED - Common Anode Anode -...