Skip to main content

44. Arduino Mailbox

Hey friends!

Today I am going to teach you about making an Arduino Mailbox. This mailbox is automated and has a 16x2 LCD display that shows you the total number of mails inside the mailbox. You can use this for either personal or common purposes. If there is no mail inside the box, the number of mails displayed in the mailbox will be zero. You do not have to open the mailbox if the display shows you zero.

Supplies

  • Arduino Uno
  • USB Type A/ B cable (for Arduino Uno)
  • Solderless Breadboard Power rail - Mini
  • IR line tracking sensor 
  • 16 x 2 LCD display module with I2C interface
  • Cardboard box/ 3D printed casing
  • Male-to-Male jumper wires (x2) - 10cm
  • Female-to-Male jumper wires (x7) - 20cm

Setup


Your setup must look somewhat similar to those in the images above.

Connections

16 x 2 LCD display

  • GND - Ground
  • VCC - 5V
  • SDA - A4
  • SCL - A5

IR tracking sensor

  • S - D6
  • (+) - 5V
  • (-) - Ground (GND)

Coding

Now I am going to explain you how this mailbox works. You will need the Arduino LiquidCrystal I2C library and Wire library for this project. You can download the .ZIP version of this library from GitHub by following the hyperlink. The Wire library is a built-in library. To add this .ZIP folder to your Arduino IDE, go to sketch----> include library---->Add .ZIP library. 
Create a global variable named 'count' and another named 'sensor'. Set the LCD address  to 0x27 for a 16 chars and 2 line display. 
Within void setup, initialize the LCD and use pinMode ( ) to configure the pin of the sensor as INPUT. 
Within void loop, set the cursor at (0, 0) and print "No. of Mail= ". The syntax used here is lcd. Set the cursor at (0, 1) to start printing the number of counts in the second line. When the line tracking sensor detects an object, it sends a LOW signal to your Arduino microcontroller. Read the state of the sensor using the digitalRead( ) function and when the state is LOW, the value stored in the count variable must increase by 1. Set a delay period of 2 seconds.
Compile and upload your sketch to your Arduino microcontroller.

Final Look

If anyone has any questions, or suggestions, about this project, please feel free to comment below or send me an email at arduinoprojectsbyr@gmail.com.

Comments

Popular posts from this blog

85. Analog and Digital Clock on Adafruit TFT Display using Arduino

 Hey everyone, Sorry I have not posted in a while. Today, I will be presenting you my Analog and Digital Clock on Adafruit TFT Display using Arduino. You can find the schematic and code explanation within this post. Read on further to learn how I did this project. Hardware components used in this project Arduino Mega 2560 Adafruit 2.8" TFT Touch Shield for Arduino w/ Capacitive Touch - You could also use any other Arduino compatible TFT display DS1307 RTC Module Solderless Breadboard - Half+ (This is optional if you are connecting the RTC module to the development board directly) Jumper wires (x4) - Male/Male jumper wires if using solderless breadboard. Female/Male if connecting RTC module directly to Arduino Mega. Software apps Arduino IDE - latest version is recommended Setup Connections DS1307 RTC Module SCL - A5 SDA - A4 VCC - 5V GND - Ground Adafruit TFT Touch shield You can simply place the Adafruit TFT Touch shield onto your Arduino Mega 2560 development board. Make sure to...

77. Controlling Micro servo Robotic Arm with MPU-6050 sensor module

 Hey everyone! I am back with an interesting project. Today, you will be learning about controlling a Simple 2 axis Robotic Arm, made from Micro servo motors, with an MPU-6050 sensor module. Please feel free to visit my previous blog post to learn about the MPU-6050 sensor module. Hardware components used in this project Arduino Mega 2560 - You could use any other Arduino microcontroller, but make sure you use an external power supply. USB Type A/B cable (for Arduino Mega 2560) MPU-6050 sensor module SG-90 Tower Pro Micro Servo motor (x2) Male-to-Male Jumper wires (x6) Male-to-Female Jumper wires (x5) Setup Schematic MPU-6050 sensor module VCC - 3.3V GND - Ground SDA - D20 (Arduino Mega 2560), A4 (Arduino Uno and Nano) SCL - D21 (Arduino Mega 2560), A5 (Arduino Uno and Nano) INT - D2 Micro servo motor (Roll) S (Yellow/ Orange) - D9 + (Red) - 5V - (Black/ Brown) - GND  Micro servo motor (Pitch) S (Yellow/ Orange) - D10 + (Red) - 5V - (Black/ Brown) - GND Coding As I alread...

70. Arduino Stopwatch and Timer

Hello everyone! Today I am going to explain you about making an Arduino Stopwatch and Timer, which can be used for time based projects. Read on further to learn more about this project. Hardware components used in this project Arduino Uno USB Type A/ B cable Solderless Breadboard - Full+ LCD display module with I2C interface - 16x2 Potentiometer - 10K Push-buttons (x5) Active Buzzer module (KY-012) LED - Red Resistors (x6) - 10kΩ (x5) and 220Ω (x1) Male-to-Male Jumper wires - 10cm and 20cm Jumpers - to reduce the usage of wires Hardware setup Connections 10K Potentiometer S - A0 (+) - 5V (-) - Ground (GND) Active Buzzer module S - D7 (+) - 5V (-) - Ground (GND) 16x2 LCD display module with I2C interface GND - Ground VCC - 5V SDA - A4 SCL - A5 Push-buttons (+) - 5V (-) - Ground (GND) S - D2, D3, D4, D5, D6 Coding Now, I will explain you about how this real-time project works and you can figure out the coding by this idea.  Push-buttons and their functions D2 - Set Countdown timer D3...